OUTCOMES:
At the end of the course, the student should be able to
- Implement the cipher techniques
- Develop the various security algorithms
- Use different open source tools for network security and analysis

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS:

SOFTWARE:
- C / C++ / Java or equivalent compiler
- GnuPG, KF Sensor or Equivalent, Snort, Net Stumbler or Equivalent

HARDWARE:
- Standalone desktops - 30 Nos.
 (or)
- Server supporting 30 terminals or more.

CS6712 GRID AND CLOUD COMPUTING LABORATORY L T P C
OBJECTIVES:
The student should be made to:
- Be exposed to tool kits for grid and cloud environment.
- Be familiar with developing web services/Applications in grid framework
- Learn to run virtual machines of different configuration.
- Learn to use Hadoop

LIST OF EXPERIMENTS:

GRID COMPUTING LAB
Use Globus Toolkit or equivalent and do the following:
1. Develop a new Web Service for Calculator.
2. Develop new OGSA-compliant Web Service.
4. Develop applications using Java or C/C++ Grid APIs
5. Develop secured applications using basic security mechanisms available in Globus Toolkit.
6. Develop a Grid portal, where user can submit a job and get the result. Implement it with and without GRAM concept.

CLOUD COMPUTING LAB
Use Eucalyptus or Open Nebula or equivalent to set up the cloud and demonstrate.
1. Find procedure to run the virtual machine of different configuration. Check how many virtual machines can be utilized at particular time.
2. Find procedure to attach virtual block to the virtual machine and check whether it holds the data even after the release of the virtual machine.
3. Install a C compiler in the virtual machine and execute a sample program.
4. Show the virtual machine migration based on the certain condition from one node to the other.
5. Find procedure to install storage controller and interact with it.
6. Find procedure to set up the one node Hadoop cluster.
7. Mount the one node Hadoop cluster using FUSE.
8. Write a program to use the API's of Hadoop to interact with it.
9. Write a wordcount program to demonstrate the use of Map and Reduce tasks

TOTAL: 45 PERIODS

OUTCOMES:
At the end of the course, the student should be able to
- Use the grid and cloud tool kits.
- Design and implement applications on the Grid.
- Design and Implement applications on the Cloud.

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS:

SOFTWARE:
Globus Toolkit or equivalent
Eucalyptus or Open Nebula or equivalent

HARDWARE
Standalone desktops 30 Nos

CS6801 MULTI-CORE ARCHITECTURES AND PROGRAMMING L T P C
3 0 0 3

OBJECTIVES:
The student should be made to:
- Understand the challenges in parallel and multi-threaded programming.
- Learn about the various parallel programming paradigms, and solutions.

UNIT I MULTI-CORE PROCESSORS

UNIT II PARALLEL PROGRAM CHALLENGES
Performance – Scalability – Synchronization and data sharing – Data races – Synchronization primitives (mutexes, locks, semaphores, barriers) – deadlocks and livelocks – communication between threads (condition variables, signals, message queues and pipes).

UNIT III SHARED MEMORY PROGRAMMING WITH OpenMP

UNIT IV DISTRIBUTED MEMORY PROGRAMMING WITH MPI
MPI program execution – MPI constructs – libraries – MPI send and receive – Point-to-point and Collective communication – MPI derived datatypes – Performance evaluation